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2 Residue arithmetic: a review

Let X and m be any two integers defined in a number
system N of radix p such that m > 0. Then we can
express X = mq + r, where q is the quotient and r is
the remainder such that 0 ~ r < m [9]. The remainder
r, called the residue of X mod m, is designated as
<X)m. Any positive integer X E N can be represented
as an n-digit tuple Xn-l Xn-2 ...Xl Xo where n =
rlogp(X + 1)], such that

n-l
X = L piXi (1)

i=O

2.1 Calculation of X mod .Bk
For k < n -I, the number X given by eqn. I is written
as

+p ,,-l-k

]X,,-1

k-l
X = L piX; + pk[Xk + PXk+l +

;=0

1 Introduction Then,

<X)pk
( k-t )= LPiXi+Pk[Xk+PXk+l+ooo+P"-l-kXIl-l]

i=O pk

k-1
= LpiXi

i=O

Therefore the number represented by the least significant
k digits of the representation of X gives the residue

<X)pko

(2)

The residue number system (RNS) has attracted consider-
able attention recently as a potential candidate for
designing high-performance digital systems brought
about by the revolutionary advances in microelectronics.
The RNS is a carry-free number system that has the fun-
damental ability to support a high degree of parallelism,
modularity and regularity. These features can be
exploited in VLSI to build high-speed digital circuits for
applications in signal processing [1, 2]. Several algo-
rithms for Fourier transforms, convolution, digital filter-
ing, cryptography and error control coding [3-5] require
hardware circuits, such as adders, multipliers and
random-number generators, that involve arithmetic
modulo operations [6-8].

In this paper, we propose and analyse VLSI architec-
tures for computing the integer modulo operation X mod
m. The choices m = 2k, 2k -1 and 2k + 1 are quite
popular from the standpoint of computational and hard-
ware efficiency as the arithmetic is simple and amenable
for implementation. In addition, the range of m can be
expanded using the Chinese remainder theorem (CRT),
which provides the basis for synthesising the modulus of
composite numbers. We call the hardware circuit that
computes X mod m the residue extractor.

2.2 Calculation of X mod fJk -1
Before proceeding further, we state the following relation-
ships [10], which are important in this analysis:

<pk),k-l = «pk -l),k-l + <l),k-l)'k-l = 1 (3)

By a similar token, we have

<pik),k-l = <[pkr),k-l

= <[<pk),k-l]i),k-l

= <li),k-l

= 1 (4)

where j is some arbitrary integer such that j ~ 0.
Let yo denote the number represented by the k least

significant digits of X su~h that yo = L~;;;J Xj.8j. Simi-
larly, let Yl = L~;;;J Xk+j.8J represent the next k digits of

x. Then, we can express

X = 1'; + .8ky; + .8 2ky + ... + .8 (p-l)ky
o 1 2 p-I

p-I
= L Yi .8ik (5)

i=O

where p = rn/kl and Yi = L~;;;J Xik+j.8j. It therefore
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follows that problem, that of evaluating X mod pk -1, is reduced to
finding <Lf;;J Yi)pk-l. If the representation of Lf;;J Yi
now needs fewer digits compared with that of the original
number X, then we can recursively apply the same pro-
cedure each time com putin g* ZU) = ~I?U-l)-l y(j-l), L.,. = O .,
j = 1, ..., y, where y is an integer bounded from above by
n -k such that, at the yth iteration, Z(JI) =
Lf~~l)-l y!JI-l) ~ pk -1, and the algorithm terminates.

As Z(l) ~ [n/k]pk -[n/k], the upper bound on the
representation size of Z(l) is given by n(l) = [logf p(O)
+ k] = [logp[n/k] + k]. Observe now [14] that n(l ~ n
for n ;;:;: k; as a matter of fact, n(l) < n for n;;:;: k + 2 and
k > 1. Thus, the number of digits of the sum at the end of
each iteration is reduced, arid the algorithm eventually
terminates. The number of k-digit numbers required for
addition in the jth iteration is given by

(j-l)n

(6)

2.3 Calculation of X mod fJk + 1

Making use of the properties

-I = <pk)pk+l

l) i - <p ik >-= fJk+l (7)

we obtain

(P-I )(X>,.., = I }f/i"

,~O "+1

(P-1 )= I(-I)'}f

,~O "+1

pU-ll = r -:-1 (10)
k

(8)
where I ~j ~ y -I. If nU) is the upper bound of the
digits needed to represent the resulting sum Z<J1 at the
end of the jth iteration, then

n(j-l)
n(JI ~ rlogpp(J-l) + kl = logp k

At the end of the (y -l)th iteration, n()'-l) = k + 1.
Therefore, in the next iteration, a maximum of two addi-
tion steps is sufficient to determine Z()'). The second addi-
tion is necessary to account for any overflow that may
arise from the first summation. A decoding logic is also
incorporated in the final stage (y + 1) to decipher the case
<pk -1 > pk -1 = 0, which we call the 'zero condition'.

The recurrence relationship outlined above is unfolded
into y + 1 levels, each of which computes the sums out-
lined in eqns. 6 and 8, except for the last level, and the
time complexity of the algorithm can be given as

, T(r logpr i- + k 1) + t(r i 1) if n > k + 1

T(n) = ,

+k

2.4 Calculation of residues of composite numbers
The CRT [10] provides a method for evaluating (X)m
when m is a composite number that is not of the form pk,
pk -I, pk + I. If m = ill= I mi is a product of mutually
prime numbers, then the CRT asserts that there is a
one-to-one correspondence between an integer
0 ~ X ~ m and the p-tuple of its residue classes with
respect to mi, i = I, ..., p. Furthermore, given a p-tuple
(XI' X2' ..., Xp), where 0 ~ Xi ~ mi' a unique number
0 ~ X ~ m can be found [12] such that Xi = (X)mi .

We can now define a Residue Mapping Function
(RMF) given by F(x) : P-4 Q as follows :

p = { the set of all residue classes generated by (X)m}

Q = {the set of all p-tuples (XI' ..., Xp),
where 0 ~ Xi < mi and I ~ i ~ p}

F = {(x, f) I x E p and f = (rl' ..., r p) E Q

suchthatri= (x)mi'i= I,...,p} (9)

If the factors composing m are of the form pk :!: lor pk,
then (X)mi can be computed according to the methods
outlined in Sections 2.1-2.3. The resulting vector of
residues can be mapped to the appropriate modulo m
class with the help of the RMF function defined by eqn.
9. We present examples of this procedure in Section 6.2.
The residue mapping function F can be constructed using
any of the standard algorithms found in the literature
(e.g. Garner's method [12] p. 253) and implemented in
terms of a look-up table stored on a ROM. The size of
the ROM needed for the RMF is given as
m Lf= I rtog (mi + 1)1 = {!}(mrlog (m + 1)1) bits for the
case of the binary number system*. Observe that, without
the CRT, the size of the ROM needed to store the
X mod m function will be 2nrlog (m + 1)1 bits. In most
cases, m ~ n, and, hence, the cost of implementing the
RMF in a ROM is small compared with that of a com-
plete look-up table.

3 Recursive method

l2t(2) + t'(k) if n = k + 1

t'(k) if n < k + 1

(11)

where t(n) is the time taken to add n k-digit numbers and
t'(k) is the time required to decode the zero condition for
a k-digit number.

For the case m = pk + 1, the procedure is similar but
for alternating additions and subtractions in deriving Z
at each stage.

To illustrate the algorithm with an example, let us
consider the ternary number system (P = 3).
Furthermoret, let X = 02102113' k = 2, and m = 8110 =
32- 1. Then, we can calculate n = 6110 and p = 3110. As
m is of the form pk -1, X mod m can be computed as
follows :

Step I: y~0)=2113; y~0)=1013; y~0)=0213;n(1)=3,
and Z(l) = y~O) + y~O) + y~O) = 11013.

Step 2: y~l) = 1013; y~l) = 113; n(2) = 2,
andZ(2) = y~l) + y~l) = 1113

Thus <02102113>8 = <11013>8 = <1113>8 = <4>8 = 4.
A generalised algorithm for computing X mod pk -1,

pk + 1 based on the above discussion is given in Fig. 1.
Procedure residue is invoked initially, with the call

In this Section, we present a recursive algorithm for com-
puting X mod m when m = pk -lor pk + I. This algo-
rithm is based on eqns. 6 and 8 presented in Sections 2.2
and 2.3, respectively. Without loss of generality, we focus
our discussion on the case m = pk -I. The original

* Unless otherwise specified, log n denotes log2 n

314

* Initially, p(O) = p = [n/k] and y~O) = 1';
t We use the notation I, to denote a number expressed in base p. If this
is omitted, then it is assumed that the number is expressed in base 10
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residue (sign-X, I X I, n, p, k, m) where sign-X = :t1. In
Steps 1 and 2, the sum Z is computed. To ensure the
correctness of the result, the sign of Z is updated in Steps
3 and 4, based on its current value sign-Z and previous
value sign-X. Step 5 checks whether the last stage (y) has
been reached, at which point n = k + 1. In that case, one
more addition is performed in lines (16) and (17), and the
variables n, Z and sign-Z are updated in lines (19)-(21)
to ensure proper termination. If n > k + 1, the upper
bound on the size of Z is calculated in line (24), and the
procedure is recursively invoked in line (26). Lines (28)-

4 Partition method

A residue extractor designed according to the discussion
in Section 3 above can handle arguments with a fixed
number of digits. Several such extractors can be used to

(1) Procedure Residue(sign-X, X, n, p, k,m):
(2) Input: sign-X, X, n, p, k, m
(3) Output: X mod m
(4) begin
(5) Step I.Represent the n-digit number X as a weighted sum of powers of pk as per eqn, 5;
(6) Step 2.Case(m) begin 1* Branch depending on the value of m * 1
(7) pk + 1: Compute 2 = Lf;;J ( -1);1-;
(8) pk- 1: Compute 2 = Lf;;J 1-;
(9) end

(10) where 1-; = D;;J X;k+jPj and p = rnlkl.
(11) Step 3.sign-2 = sign(2) 1* Determine the sign of2 *1
(12) Step 4.sign-2 = sign-X * sign-2 1* Update sign-2 *1
(13) Step 5.if(n = k + 1) then begin 1* Second addition at the yth stage *1
(14) Let 121 be represented as Y~ + Y'l where Y~ = L~;;J xi Pj and Y'l = xi .
(15) Case(m) begin
(16) pk + 1: Calculate 2' = Y~ -Y'l
(17) pk- 1: Calculate 2' = Y~ + Y;
(18) end 1* of Case *1
(19) 11 = k
(20) sign-2 = sign(2) * sign(2')
(21) 2=12'1
(22) end
(23) else
(24) 11 = rlogprnlkl + kll* Calculate size of 2*1
(25) Step 6.if 11 > k then
(26) call Residue(sign-2, 12 I, 11, p, k, m)
(27) else
(28) if 121 = m or 121 = 0 then residue = 01. Zero Condition *1
(29) else begin
(30) if sign-2 < 0 then residue = m -121 else residue = 121
(31) return (residue)
(32) end
(33) end 1* of Procedure Residue * 1

Fig. 1 Recursive algorithm for computing X mod pk -I, pk + 1

n-digit input X

L

~~itI15-di.9itl

m~~

RA I R

§

realise a modular structure capable of handling larger
numbers. The technique, which we call the partition
method, separates the argument into portions that can be
handled individually by the original residue extractor and
finally combines the results. Specifically, the given
number X is partitioned into A. sub-blocks of s-digits
each, and the residues of each of the A. sub-blocks are
evaluated using the recursive approach. The outputs of
these sub-blocks are processed by a tree of residue adders
(RAs), which compute the residue by reduction through
an addition modulo m operation. Fig. 2 shows the
general organisation of this structure. We proceed as
follows :

<X)m = <Vo + psVl + ...+ pis~

+ .+ Ps(;.-l>V;.-l)m

for O ~ j ~ ). -1

where A = rn/sl, and JIi = Lj:~Xis+j pj.

From eqns. 4 and 7, it follows that, if 11 = s/k is an
integer, then <PS)m = «Pk)s!k)m = «pk),,)m = I", and

residue X mod pk-1, ~k+1

Fig. 2 Logical structure of the partition method for computing

Xmodpk-l,pk+l
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<PS;)m = I ,,; when m = pk -I. By a similar token,

<PS)m = ( -I)" and <PS;)m = ( -I)"; for m = pk + I.

Hence, in the partition method, the number of digits s is
chosen such that s is a multiple of k, and this simplifies
the computation as given below:

Case 1: m = fJk -1

<X>m = «VO>m + <V1>m + ...+ <V).-I>m>m

().-1 )= .L <JI;>m

,=0 m
Case 2: m = fJk + 1

<X>m = «VO>m + (-1)"<V1>m
, .,-" -, , ,--

(12)

+...+(-I)"'A .'<VA-l)m)m

/A-l )= \ i?;O ( -1)"i( J'i>m m (13)

Thus X mod pk -1, pk + 1 can be computed as a
modulo m summation of the residues obtained from each
s-digit block. The binary tree arrangement of the residue
adders permits computation to proceed in parallel in
rlog2 J.l steps. While considering the limiting cases,
observe that, when s = n, there is exactly one X mod m
block, and the partition method is identical to the recurs-
ive method of Section 3. On the other hand, for s = k, the
s-digit modulo m units in the representation are not used,
and the partition method reduces to a circuit consisting
of J. -1 residue adders arranged as a binary tree [13],
each adding/subtracting two k-bit numbers, as the case
may be, and evaluating the residue with respect to m.
This circuit is a special case of the partition method,
where the modulus is evaluated by reduction through a
cluster of residue adders.

+ ...+ H(2) (14)

where H(p(i-l» is the area complexity for adding p(i-l)
k-bit numbers for i = 1, ..., y -1, and H(2) represents
the complexity for adding two k-bit numbers in the yth
stage.

From the above equation, it can be seen that the
recursive method is dictated by the multi-operand addi-
tion in the first step of the algorithm. According to the
parallel counter schemes advocated in [17,18], the hard-
ware can be synthesised by using k-bit adders as the
major computational element. Let the area occupied by a
k-bit adder [15] be denoted by A(k) = (!J(k log k). Then
the complexity of adding r n/k 1 words of k-bits can be
derived as follows :

For the sake of simplicity, let us assume that r n/kl is a
power of two. If the adders are arranged in the form of a
binary tree [17] for computing r n/k1 k-bit words, then
the first level consists of rn/k1/2 k-bit adders. The second
level comprises rn/k1/4 (k + 1)-bit adders and so on, till
log rn/kl stages, at which point there is one adder of
complexity (k + log rn/k1)-bits. A (k + i)-bit adder block
(i = 2, ..., log r n/k 1 -1) can be decomposed into a k-bit
adder and an i-bit adder such that the carry output of the
k-bit adder is chained to the i-bit adder. Then the area
complexity H (r n/k 1) can be determined by computing
the complexity of the k-bit adder blocks and the extra
adders required for accumulating the overflow bits at
each level :

logI/kJ ~
;=2 2'

5 Complexity analysis

In this Section, the proposed structures obtained from
the recursive and partition methods are evaluated as an
asymptotic VLSI design for the case of the binary
number system (.8 = 2), which is a tenable medium for
implementation. The complexity measures for the area A
and the propagation delay time T of the circuits are
derived based on the assumptions given in [15], pp.
29-38 and 137-138.

5.1 Recursive method

5.1.1 Area: In Section 3, it was shown that the evalu-
ation of X mod m can be accomplished by recursively
adding r(n(i)/k)l k-bit factors, i = 1, ..., y -1, and that
the representative length of the sum, namely n(i), reduces
as given by eqn. 10. The residue can therefore be com-
puted by repetitive summation of k-bit words, which is
akin to the partial product reduction in the multipliers
problem [16]. The hardware complexity, Arm is given as

l'
Arm = L H(p(i-l»

i= 1

= H(r ~l) + H(r ~l)

= (r~
) log rnlkl- 1 r i li log i

-1 klogk+ i~1 1i+l

(r n ) r i 1logrnlkl-1 i log i
= --1 k log k + -L ~

k 2 i=1 2

As x log x < 2x for integer values of x ~ 1, the total area
is bounded from above by

= (r~

-1 )k log k + ill loa [,,/kl- 1
2 L 1

i= 1

-1 )k log k + G!~
2(r n(JI-2J l)+ ...+ H --:;;-- + H(2)

(15)
316 IEE Proc.-Circuits Devices Syst., Vol. 142, No.5, October 1995



~ c'(log n log log n + log log n log log log n

+ ...+ 2 log k)

= {!)(log n log log n) if n }> k

where c' is a constant.

(22)

5.2 Partition method

Arm = (!)(n log n) + (!)(1og n log log n)

+ (!)(log log n log log log n)

+...+(!)(2klogk) (17)

~ c(n log n + log n log log n

+ log n log log log n + ...+ 2k log k)

~ c log n(n + log log n + log log log n + ...)

+ 2ck log k

~ c(1.3335n log n + 2k log k)

= (!)(n log n) (18)

where c is a given constant. (See [14] for the derivation
details.) Note that, in eqn. 17, the term (!)(2k log k) refers
to the area complexity of the two k-bit adders in the yth
stage. For the case k = (!)(n), the area complexity measure
of the recursive method is similar to that of eqn. 18, as
the complexity of the adder is (!)(n log n).

5.1.2 Time: The time complexity 1;:m of the recursive
method is given by

l'
1;:m = L t(p(/»

/:1

+"'+t(2) (19)

Let the time complexity of a k-bit adder [15] be given as
t(k) = {!}(log k), With the assumptions made in Section
5,1,1, the time required to add rn/kl k-bit words can be
calculated by considering the delay of the k-bit adder and
the extra adders at each level of the binary tree, Therefore

(rnl) log [n/k1 log [n/k] -1
t k = i~l t(k) + j~l tU)

rnl log [n/k]-l
= log k log k + j~l logj

5.2.1 Area: As mentioned previously, X mod m is evalu-
ated for each s-bit block using the recursive method, and
the output is processed through a tree of residue adders.
The residue adders are versions of conventional adders
[19] that perform the addition modulo m operation
( (X l)m I (X 2)m)m .For example, when m = 2k -I, the
residue adder computes the sum according to the follow-
ing conditions :

(a) If(X1)21-1 + (X2)21-1 < 2k -1, then
(X 1)21-1 + (X2)21-1 yields the desired result.

(b) If (X1)21-1 + (X2)21-1 = 2k -I, then we have a
string of k Is, and the result is decoded to be zero as
(2k-l)21-1 =0.

(c) If (X1)21-1 + (X2)21-1 > 2k -1, then the addi-
tion will result in a k + 1 bit number, and we have

«X1)21-1 + (X2»21-1

= (2k + «X1)21-1 + (X2)21-1)21)21-1

= 1 + «X1)21-1 + (X2)21-1)21

The required solution is obtained by adding the carry bit
to the least significant k-bits after the first addition is per-
formed. In effect, two levels of addition are required. The
residue adder for m = 2k -1 is composed of two adders,
the first one for adding the two k-bit numbers and the
second for absorbing the resultant carry, if any, to the
previous sum. The adders can be constructed to have an
area and time complexity [20] of {!}(k log k) and {!}(Iog k),
respectively, and the decoding circuit for the zero condi-
tion can be assumed to have {!}(Iog k) delay also. The
above circuit can be adapted to perform I's complement
subtraction, for instance, when m = 2k + 1, with compa-
rable complexity.

The area of the circuit using the partition approach is
composed of two parts, namely the area occupied by the
s-bit stages As and the residue adder tree At. The area for
the s-bit stages comprising [n/s] blocks can be obtained
by substituting s/k for n in eqn. 18.

As = r ; l{!}(i log i)

= {!}( (;)(i log i))

= {!}(~ log i) (23)

The area for the residue adder tree is given by

(Jog fnlkl )At = i~ 2i-1 A*(k)

= 2(r ; 1- 1 )A(k) (24)

where A *(k) = 2A(k), accounting for the two levels of
addition in the residue adder.

=
{ (!)(log n) if k = (!)(n) (20)

(!)(log n log log n) if n ~ k

Substituting eqn. 20 in eqn. 19, we obtain the time com-
plexity of the recursive method as

1;:m ~ c'(log n + log log n + log log log n

+ ...+ 2 log k) = (!)(log n) if k = (!)(n) (21)
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= {!}(n Jog n) (16)

When n ~ k, the asymptotic area complexity of the recur-
sive method can be obtained by substituting eqn. 16 in
eqn. 14:



The total area Ap can be obtained from eqns. 23 and
24 as follows :

Ap = (9(~ log (i) ) + 2(~~ 1- 1 )(9(k log k)

= (9(~ log i) + (9( (~)k log k )

The asymptotic area complexities of the partition method
are then given by

A = { (9(n) if n ~ s, k (25)

p (9(n log n) if s, k = (9(n)

Applying eqn. 13, we obtain <X)s = < <Vo)s + <V1)s)s .
The output from the two blocks is exported to a residue
adder to obtain the final result <X)s .

The recursive method is used to compute the residues
of each of the two partitions, namely <Vo)s and <Vl)s .
These terms are calculated using eqn. 8 such that

<Vo)s = <yo -Yl + Y2- Y3)S

<Vl)s = <Y4 -Ys + Y6- Y7)s

where Yi = LJ=o X2i+j2j, i E {0, ...,7}.
A block diagram for computing <Vo)s is illustrated in

Fig. 3. The key components of this schematic diagram

5.2.2 Time: The time complexity for the partition
method is dictated by the delay of the s-bit blocks and
the delay of the residue adder tree. Substituting the upper
bound of the delay from eqn. 22, the time complexity 1:;
for the s-bit blocks is given as

1:; = {!}( log (i) log log (i) ) (26)

The residue adder tree has a delay given by

1;: = log r ~ IT*(k) (27)

where T*(k) = 2T(k).
Hence, the time complexity Tp of the partition method

is given by combining eqns. 26 and 27, as follows:

Tp = {!}( log (i) log log (i) ) + 2 log r ~ l{!}(log k) (28)

The asymptotic time complexities can then be approx-
imated as

{ {!}(lOg n;og log n) ~f s = {!}(n)

Tp = {!}(log n ) If n ~ s, k (29)

{!}(log n) if s, k = {!}(n)

From the above analysis, it can be observed that the area
complexity for the recursive approach is {!}(n log n),
whereas, for the partition method, it is in the range
[{!}(n) ...{!}(n log n)]. On the other hand, the time com-
plexities of the two methods vary between
[{!}(log n) ...{!}(log n log log n)]. It can be concluded that
the partition approach has an area-time complexity that
is better than or equal to the recursive approach, and the
choice of the partition size s will dictate the performance-
to-cost benefits.

s7 5 3 1 O
I 1- -1- -I" -1- -I VO(B bits+sign bit)
I -v- V

2 !~ array reduction

---,
2-blt 2-bit ::::

subtractor -subtractorl ~1J
lsianl(':OJ 5ianlI1~) -

-register module

:sign-;;:

L~i-g!1.-*-*-j

sign***

sign
i(2:0)

~

sign 1(2)~(3 bits)

r**;
: .1

sign update I I 0;-:'

module (1-0)

-I .1. 1(2 bits)

sign ~

zero detection.
negative number
residue correction

module(1:0 ).
yo mod 5

Fig. 3 Schematic diagram of Vo mod 5 unit where Vo is an 8-bit
number

.denotes the individual bits of the operand

include 2-bit subtractor/adder modules, register inter-
faces, a sign update module, and a zero condition detec-
tion and negative modulus correction circuitry
corresponding to procedure 'residue' discussed earlier .
The grouping of bits for array reduction is shown in the
top right of Fig. 3. This design has four stages, with each
stage having a delay approximately equal to that of a
2-bit adderlsubtractor unit. The implemented circuit is
nonpipelined. However, it can be easily pipelined with
the addition of register modules at every stage.

6 Implementation

A 16-bit residue-extractor for positive integers with
moduli m = 3, 5, 7, 9 and 10 has been implemented in
311.m CMOS technology using the recursive and partition
methods discussed in this paper. To illustrate the meth-
odology behind the two proposed architectures, we
present the basic block diagrams and discuss the imple-
mentation issues for the cases m = 5 and 6.

6.2 X mod 6
We follow the technique presented in Section 2.4 to
compute X mod 6 using the RMF. The number 6 can be
expressed as the product of two relatively prime factors
ml and m2 where ml = 2 and m2 = 3. Therefore (X)6
can be computed if (X)2 and (X)3 are known. From
eqn. 2 and k = 1, we obtain (X)2 = Xo, where Xo is the
least significant bit. (X)3 (where 3 is expressed in the
form 2k- 1 = 22 -1) can be evaluated using either of
the partition or recursive methods. We chose the parti-
tion method with two 4-bit partitions to extract (X)3 .

Table 1 gives the RMF defined by eqn. 9 for synthe-
sising (X)6' and the required Boolean logic can be
derived easily from (X)2 and (X)3. Likewise, (X)lO
can be synthesised from (X)2 and (X)s through a
ROM.

6.1 X mod 5
In this case, observe that the modulo is of the type 2k -1
with k = 2. The implementation of <X)s is based on the
partition method. The number X, whose size is 16-bits
(excluding the sign), is partitioned into two blocks Vo and~7 .~7 .
VI such that Vo = '-'i=O 21 Xi and VI = '-'i=O 2'Xi+8 are
two 8-bit numbers. Here, s = 8, ). = 2, '1 = 4, and p = 2.
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memory requirements increase exponentially with
operand length. In this work, we have proposed two new
VLSI architectures for implementing X mod m, for
m = pk -lor pk + I, and presented a practical and scal-
able hardware circuit for the binary number system. We
have also shown that the range of m can be extended
using the CR T .In most practical cases, the representative
length of the operand X is larger than that of m. Hence,
the ROM's cost for implementing the RMF will be less
than that of a complete look-up. In Table 4, we sum-

6.3 VLSI chip
The micrograph of the implemented 16-bit residue
extractor is shown in Fig. 4, and some related technical
details are summarised in Table 2. The performance of

Table 1: F(x): p--a

p Q

<X)6 <X)2 <X)3

O
1
2
3
4
5

00
11
02
10
01
12

Table 4: Synthesis method of X mod m for typical values of
m~33

Type Typem m

2 2k (k=1) 18 «X>2'<X>9) CRT(2,9)
3 2k -1 (k = 2) 19 -
4 2k (k=2) 20 «X>4'<X>5) CRT(4,5)
52k+1 (k=2) 21 «X>3'<X>7) CRT(3,7)
6 «X>2'<X>3) CRT(2,3) 22 «X>2'<X>,,) CRT(2,11)
7 2k -1 (k = 3) 23 -
8 2k (k = 3) 24 «X>3' <X>8) CRT (3,8)
9 2k + 1 (k = 3) 25 -

10 «X>2'<X>5) CRT(2,5) 26 -
11 -27 -
12 «X>3' <X>4) CRT (3,4) 28 «X>4' <X>7)
13 -29 -
14 ( <X>2 ' <X>7) CRT (2,7) 30 ( <X>5 ' <X>8 CRT (5,6)
15 2k -1 or (k = 4) 31 2k- 1 (k = 5)

( <X>3 ' <X>5) CRT (3, 5)
16 2k (k=4) 32 2k-1 (k=5)
17 2k + 1 (k = 4) 33 2k + 1 (k = 5)

marise a typical moduli set that can be implemented
using the schemes discussed in this paper for small values
of m. The prime factors of m that are synthesisable
through the CRT are given in brackets for clarity.

The proposed structures, in addition to their regu-
larity and modularity, have significant advantages in
terms of speed and area over the model proposed in [7].
It has been reported that the VLSI circuit designed by
Alia et al. [7] for integer modulo m operation has a
response time of less than 200 ns for 32-bit numbers. The
area and time complexity of their architecture is given as
{9(n2/T.it) and {9(TM), respectively, when TM is in the range
[Iog n, .jn]. It has been shown in this paper that the time
complexity for the two methods is in the range [{9(log n),
{9(log n log lig n)], and the area complexity is in the range
[{9(n), {9(n log n)]. The measured propagation delay in our
circuit for 16-bit input operands is less than 109 ns in
3 Jl.m CMOS technology. Our design uses high-speed
carry look ahead adders [20] and does not involve any
multipliers, as advocated in [7]. Furthermore, the pro-
posed structures can handle signed integers and are
amenable for pipeline implementation. Hence, a wider
operand range and higher throughput can be realised.
The disadvantages of our model are its restricted range
for m and the inability to compute residues of prime
numbers that are not of the form 2k, 2k :t 1, in contrast to
the generalised approach of [7].

Fig. 4 Micrograph of a 16-bit residue extractor implemented in J Jlm

CMOS JDLM technology

Table 2: Statistics of implemented 16-bit residue extractor

Technology 3.u CMOS3DLM
Area of the chip 4545.1 x 4545.1 .u2m
Number of pins 38
Number of transistors 5156
Measured propagation delay 108.6 ns
Dynamic power dissipation/MHz 30 mW

the chip was characterised by clocking input data over a
period of 200 ns (nonpipelined case). A timing analysis
was conducted on the chip using automatic test
equipment. The measured worst-case delay of the sub-
units of the chip are detailed in Table 3. With a

Table 3: AC characteristics of residue extractor

Output group Maximum propagation delay

ns

108.6

108.3
107.9

75.4

104.7

62.3

MO
MO
MO
MO
MO
MO

maximum delay of approximately 109 ns, the chip gives a
throughput in excess of 9 million operations per second
(MOPS).

8 Conclusions

The technological advantages of VLSI have made RNS
implementation a viable proposition in terms of speed,
cost, power dissipation and chip density. The basic con-
tribution of this work is the design approach for calcu-
lating X mod m when m is of the form pk, pk :t I. Two
algorithms, namely the recursive and partition methods,
have been proposed, and expressions for the asymptotic
VLSI complexity for their implementation have been

319

7 Discussion

Notwithstanding the tremendous progress in contempor-
ary VLSI memory technology, ROM-based techniques
[6] are expensive and infeasible for large operands as
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derived. The methodology discussed in this paper has
been practically applied in the design of X mod m arith-
metic units for a port selector module in a 1.2 Jl.m CMOS
Hypercycle routing chip [21], where X is a 16-bit
operand with m = 2, 3, 4. The cases m = 2, 4, are
straightforward, and the X mod 3 unit has been imple-
mented using the recursive approach for 4-bit partitions
with a two-level residue adder tree. The throughput of
the residue extractor module in the above chip exceeds 50
MOPS, as evidenced by timing simulation results. Tech-
nological scaling and pipeline implementation will
provide a many-fold increase in the performance of the
residue extractor. Additionally, the algorithms proposed
here can be extended to nonbinary systems when multi-
level logic circuits become viable for implementation.
Another interesting application of this work includes the
design of circuits for constant division algorithms [22].
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